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METHODS OF SIGNIFICANCE ARITHMETIC

N. Metropolis
Theoretical Division
Los Alamos Scientific Laboratory
Los Alamos, New Mexico 87545

2.1 Introduction.

The ambition of significance arithmetic is to be able to specify
the standard deviations of computational results in the quite general
case-where input quantities have quite disparate magnitudes and
accuracies. Many problems arising in the natural sciences are of this
character, although too often their initial data are idealized by
artificiélly extending their precision to that of the standard word.

A brief review of earlier developments: in its earliest form,
significance arithmetic (SA) utilized the one degree of freedom in the
computer representation cf input quantities to exhibit their accuracy
to the nearest 1nte§et value., A set of algorithms were found for
addition (subtraction), ﬁultiplication and division that approximated
the properties of appropriately combining statistically independent
quantities., ©Ttxactly representable quantities wire not distinguished;
they were siaply in normalized form. Later arithmetic rules were ex-
tended so that such precise quantities constituted a special set and
each result was examined for truncation error and accordingly removed
from the special set and henceforth regarded as an imprecise quantity.
More recently, an axiomatic approach has been started based on equiva-
lerce classes of integer strings with a boundedness condition [1].

We do not pursue that direction here. Instead, the notion of non-integral

values for the number of aignificant digits is introduced and developed.
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It will be seen that this leads to a natural representation for the
associated variance of a computer quantity, wherein its exponent in
a su’tably unnormalized form can be conveniently used as the exponent
of the variance. This fact simplifies the physical realization in com-
puting the variance of results of the fundamental arithmetical
operations.

But for error correlations as a computation proceeds, the task of
the error-analyst would be complete. The nature of these correlations
15 examined and analytic techniques developed for coping with them.

For complicated and long sequences of arithmetical operations, a pro-

‘cedure ia made available that reveals the correlatiorns in an empirical

fashion. {A preliminary report is given of two applications--a simple

nonlinear, partial differential equation and matrix inversion.

2.2 Non-integral values of significance and the role of variance.

The usual form of computer representation of um-normalized quanti-
ties 18 x = 2%:f = (e,f), for integer exponent e and the coefficient
or fractional part f satisfying 0 < |f| < 1. If.x is an imprecise
quantity, and Oy is the associated standard deviation, define the number

of eignificant digits of x as the rounded integer of

(2.2.1) s, log o .
x
Representation of x is not unique for x = (e,f) is equal to
(eta, 2-'f) for integer g in, say, a binary computer. The range of

a is such that no significant digits are lost on the right end of the
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standard uord+(and. of course, on the left). This one-degree of freedom
may be used to exhibit the 1n¥eger number of significant digits of x
with reference to some fiducial bit position of f, call it k; it is
usually near the right end of a standard word. The choice is optional,
but once selected for a problem it is considered fixed. A quantity in
this representation is said to be in significance form.

Assuming operands are statistically independent, one can establish
rvles for the representation of the result of addition (subtraction),
multiplicaticn and division of two quantities in significance, or unnor-
malized, form [2]. Such rules are, of course, limited to integer
values of significant digits.

Somewhat later, provision was mada to accommodate precisely repre-
sentable operands [ 3], that were hitherto a source of possible awkward-
ness. Clearly if such an operand participates in an arith;etical opera-
tion with an imprecise one, the result is necessarily imprecise. If
the participants of an operation are both precise, an examination is
still required to establish whether the result is precise; the division
1 + 3 1llustrates the case of imprecise result from precise inputs,

The question naturally arose whether one cculd achieve a more accu-
rato measure of significance by keeping track of the fractionsl part of
8 defined in (1). The idea would be to represent a quantity in signi-
ficance form, i.e., with exponent &nd unnormalized fraction, together
with a third part, the fractional significance. Considerations of how

to menlpulate these fractional significances in arithnetic processes

made it clear that it would be more convenient to keep track of variances

(in the sense of stutistics). Specifically, the associlated variance

t+ k 1o the residence of the least significant digit of x.
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2.3

would be coupled to every operand; every arithmetic operation would
then involve a corresponding computation of the variance of the result,

with suitable approximations and simplifications described below.

Rules for variances.

Let (x> = E(x?) - Ez(x) represent the variance of x, where E is
expected value; {x,y} = 2(E(x,y) - E(x)E(y)) be the covariance of
x,y. If x,y are statistically independent, then the rules from simple

statistical considerations are:

1]

(2.3.1) addition: x+y) = {xD + P
(2.3.2) multiplication: (xy) = x2{y> + y? (x> + €3¢
(2.3.3) reciprocal: <-,1;> & ;1:;- O, (for <{xD> < x?)

vhere quantities outside the brackets are always mean values. The
assumption is made that <x) < x?, otherwise x has no significant digits.
Since <x)/x? = 2-28x. it is reasonable to neglect N in (2.3.2)

no approximations are made in (2.3.1); the neglection in (2.3.3) is of order
<x>’/x°. For division, the last two rules are combined in an obvious
manner.

We remark that all numerical procedures should be monitored so that
the computation is interrupted whenever a result has no significant
digits. Note that in that circumstance, the associated variance is
available for statistical considerations.

An important observation is that the above rules do not depend on

the detailed structure of the distributi~n function associated with each

(ASL-ERDA-QFFCIAL



2.4

operand, apart from the natural asrumption that the first z2ad second

moments exist.

Tvo representations.

Alternatives exist for the implementation of an arithmetic pro-
ce3sor that would execute the coupled operatlons of the arithmetic
proper and of the variance computation. In the first instance operands
would be represented in unnormalized or significance form with appro-
priate algorithms (4 ]. In the second approach, the conventional
normalized form of arithmetie is available.

The advantage of the former is that the exponent of x = 2%.f
is simply related to the exponent of its variance. (Recall that the
representation of x is related to the magnitude of its variance.) As
a consequence, the computer word need have only one exponént instead
of two. Moreover, variance computation is more efficient in this
form owing to fewer shift operations in the process of exponent
matching. If one were embarking on a new design of 3n arithmetic pro-~
cessor, this approach should be seriously considered.

Normalized forms for arithmetic are, however, the more common
approach and lend themselves to implementation by software. Here the
couple operands would have their individual (not necessarily related)
esiponerts along with their respective fractional parts and the pair of
operations would be executed independently and presumably in new com-
puters, concurrently.

Algorithms for computing the fractional parts of variances have

been developed for both unnormalized and normalizcd forms of arithmetic;



the former has been implemented on the laboratory's MANIAC c&mputer
and the latter will be made available on one of the laboratory's
commercial computers.

It is perhaps useful to consider a simple example, namely, that
of summing a set of uncorrelated, imprecise operands, where no restric-
tions are placed gn the magnitudes or imprecision of the individual
summands. (The present writer is not aware of the existence of such
a sub-routine in any other computer library.) If S = Z(xi. (ki) )
where X, = 2e'fi is in significance form, then one orders the sum-
mands according to increasing exponent and adds them in turn accordingly,
together with a calculation of successive variances. The cordering is
desirable to avoid truncation on the right of the fractional part in a
finite computer register.

On the other hand, if x, is in normalized form, then it is the

i
variances that are ordered and the summing of xg is perfcrmed in that

order.

Variance and significant digits

The variance of a result in addition, multiplication or division as a
function of in ut quantities has a simple interpretation in terms of sig-
nificant digits. Recall that x?/ {x) 1is related to the number of signi-
ficant digits of x; in fact 225X = x2/ {x) in binary base.

In the addition proc:ss, <x + y) = <x> + (y) for statistically

independent x,y. Let

(2.5.1) c §§2 = 5%? , c>0



that is, for ¢ <1, oy > 8yi thus

2
(2.5.2) i+ ) =D (1 + ci-, ).

The two terms in the parentheses determine the contributions of <x)
and {y> respectively to the variance of tte sum. If ¢ =1, and

x2 ®*y?, <) = <y) and the variance of the sum has doubled, rela-
tive to a2 variance of the input. On the other hand, if ¢ <1 (sy > 8y)
2

and y? < x?, then <x) contributes relativaly mcre than (y) to

(x + y>>. In significance arithmetic, this corresponds to ex > ey
where e s ey are the exponents of x,y in significance form, and it is
y that is shifted to the right to achieve exponnet match.

In multiplication, write Eq. (2b) as

(2.5.3) 5¥’-2--$’z‘i+§.¥2+%2 K238

x‘y b4 y

Since it is assumed that x,y have significant digits, the last term
on the right in (2.5.3) can be neglecteu. Thus the number of signi-
ficant digits of the product is determined primarily by the less
significant input in accordance with the rules originally proposed
for significance arithmetic [2 ]. For 8y % g _, clearly sxy = 8, - k.

y
Similarly, for division, a simple calculatior shows that

(2.5.4) g,‘%; - 5;2 . ;3};?_ ,

The comparison with Eq. (2.5.3) is interesting.

LASL-¢20 A CFHCIAL



2.6 Error correlation.

If there is no error correlation betwuen operands the above rules
for computing variances would be reliable. Unfortunately, as a cal-
culation proceeds, the operands tend to have correlated errors. In
order to achieve reliable measures of variance, such correlations must
be recognized and taken into account. In a simple algorithm, its tree
structore may be examined in detail and a reliable version obtained.

As experience increases and more sophisticated techniques are developed,
more ambitious algorithms would become tractable. For very compiicated
algorithms, there exists an empirical statistical technique that can
be applied to establish the extent of error correlation in the output.
Moreover, if unacceptable amounts of correlation exist, then examina-
tion of intermediate quantities by the usual bisection of the program
code pinpoints the source of correlation and can be dealt with. The
technique is called the method of reduced precisicn and is discussed

in the next section.

A simple example of error correlation occurs in forming d = ab + ac
where a,b,c are imprecise and statistically independent, Using either
of the two arithmetics, one would find the appropriate value of <d> if
the computation were performed as d = a(b + c). On the other hand, if
the computation was performed as d = ab + ac, then from statistics we

know that

(2.6.1) <& = ¢aby + (ac) + {ab,ac}.

Since

LASL-ERD A OFFICIAL



2.7

(2.6.2) {ab,ac} = bc{a,a} = 2bc ¢a) ,

where, by our convention, quantities outside brackets are expected
values. Thus the sum of the variances may not be a reliable measure
of {(d) because of error correlation. Note that the deviation may be
of either sign according as the signs of b,c agree or disagree.

A second example of correlation (it occurs in the study of matrix
inversion) is <%> for x,y statistically independent. It can be
showm that

@69 (E5) - (G + (D) o

and further simplification of (y/(x+1)) can be achieved using the easily

derived relation <x/y> = (xy) /y". Some additiousl relations that

may be useful in studying error correlations are given in the appendix.

Method of reduced precision.

In complicated algorithms, the nature and detection of error
corzelation is less apparent. A method based on statistical perturba-
tions of the initial data is available and one studies the consequent
distributions of the output values. The natural setting for this
method is the unnormalized form of operand representation that reveals
the number of significant digits. Recall that each input has its

least significant digit residing in the kth

stage on the right of a
computer work, where k is optional bLut fixed throughout an algorithm.

The idea ies the fcllowing. Neglecting all correlations, one computes

LASL-ERDA-OFFICIAL
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a set of output (x:) for the inputs (y;) using significance arithmecic
throughout, the superscript indicating original inputs and corresponding
outputs; 1 and jJ take on the necessary range of values. The inputs are
then statistically perturbed by adding = uniformly distributed random
variable to the inputs so that in effect the precision of each is re-
duced by a constant amount, say three or four binary digits. The per-

turbed inputs have their least significant digit residing in the k'

stage to the left of k. Ths inputs (y;) produce (xi). Form
2.7.1) A&l =x'-x ¢ h1
o7 "% CX cr each 1.

Repeat the computation m times to achieve a distribution of values
for AP. for each i, starting with (y;). If perturbed Xy is free of
error correlation, then the distribution of A1 is stronbly peaked
about the k' + 1 position. More frequently, correlation does exist;
for positive correlation the peak of the distribution is to the left
of k' + 1, and to the right for negative correlation. In a given
prob) :m, all three possibilities may occur. |

If error correlations are acceptably small, no further study is
nceded; otherwise two options are available. One can easily examine
A-distributions for intermediate quantitites and pinpoint the source
of correlation and then either modify the program code to eliminate
that correlation, or to recognize its nature and use appropriate
calculations of variances. The point is that the arithmetic proceasor
would treat, for example, the (correlated) step q = x/(y+x) as though

it vere q' = x/(y+z). In this simple case one can, of course, write

LASL-ERDA GFFICIAL



2.8

11~

q~1/(1 + (y/x}) and avoid correlation. Clearly, there can be
difficulties if one taritly assumed Q') = (q” . The perturbations
of the initial data is to find such pitfalls.

This simple example of the two forms x/(y+x) and 1/(1+(v/x))
stimulates the remark that mathematically equivalent forms are not
always computationally =quivalent when dealing with imprecise quantities.

T'.e¢ method of reduced precision can, mutatis mutandis, also be

usez in normalized arithmetic. Significance arithmetic has a distinct
advantage, however. Since its rules are based on uncorrelated errors,
they approximate very closely the correspond’'ng calculations of variances.
Thus the method of reduced precision can dispense with such calculations
until correlations are detected and needed. Normalized arithmetic must

always include variance computation when using the method.

Two preliminary studies.

The coupling of variance computation with every arithmetic
operation has been attempted in two instances: a study of Burgers'
equation with initial and boundary conditiovns having imprecise val.es;
a study of inversion of square matrices whose elements also have im~
precise values with no restrictions on the disparity in magnitudes
and imprecisions of such values. The studies are ambitious ones and
we give only a preliminary report at this time.

Specifically, Burgers' equation in one space dimension is

2.8.1) u, + uu, - va = 0

LASL-ERDA -OFFICIAL
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vhere u has dimensions of velocity and the usual notation éor (partial)
space and time derivatives is adopted; and v is the diffusivity coeffi-
cient. It is the simplest equation combining both nonlinear wave
propagation and diffusive effects. The initial condition is a wave
front dropping abruptly and continuously from uniformly high u-values
behind the front to low u-values in front; also uniform. Boundary
conditions at each end corrcspond to these uniform values respectively.
Several discretized versions have been investigated; the simplest re-
ceived most attention owing to the fact that the various interactions
are complicated enough and the others did not offer any compensating

advantages. Specifically, the difference equation is

n+l n , VAt ., n n n At -, n n
ugtn o Uy b T (U - 20yt ug ) mgag WU T vl)

(2.8.2)
wvhere u = (u?+1 + u; + u§_1)13 and At, Ax are time and space intervals
respectively and the superscripts and subscripts are time and space
indices. The classical stability conditions relating At and Ax are

of course observed.

Consider firs: the uniform region behind the wave front. Initlally,
statistical fluctuitions about an equilibrium value arc present; they
correspond to a certain imprecision in the initial data. The me*hod
of reduced precision showed a decrease in the variances associated with
u-values. W.at is the rate of decrease? Since the first and second
space differences are essentially zero, the effect of continued pro-
cesasing of Fq. (12) at point j is to take suws of the initial, statistical

fluctuations from a larger number of neightoring points siurrounding the

LASL-ERD A-OFFICIAL



-13-

the point j. Thi~< number increases linearly with n. The s;mning
process is similar to the estimates, 8’ of the mean of a distribu-
ticn; there it i5 well kacwn that g - 02/k where k 1s the size of
the sample and 02 1s the variance of the original distribution. Hence
a measure of the decreasing variance of u; in uniform regions is
available.

. A more lateresting observation was the effect of the wave front
passing through a region, wherein the u-values rise from some low
value to some higher (uniform) ome. In the region, say around point
J, of the wave front, the variance of that u-value increases with time
to a maximum and then decreases to its original value. Although the
wave front being considered is not a shock wave, it is suggested that
the increased variance be associated with an increase of entiopy, &
behavior well knoyn in shock waves. If the variance of vV is greater
than that of u, the profile of the variancea of u across the wave front
exhibits a bimodal shape. The decrease at the center is connected with
the fact that the second space difference of u has a minimum there. If
the variance of V is small relative to that of u, the profile becomes
unimodal and persists even as {V) - 0. Study is continuing to establish
the nature of the dependence of {u) across the wave front. A likely
candidate 1s the second space difference of u, possibly multiplied by
u itself.

The second application is to inversion of a real, square matrix with
elements of arbitrary magnitudes and significances. The discussion 1ic
limited to the 3 x A case. Our purpose is to study the nature of the

correlations between the cofactors of the determinant in the algorithm of
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interest. A tractable solutio: is found; it is clear how the analysis
could be extended to 4 x 4 matrices, but the combinatorial complexity
is great.

The algorithm studied is the classic one where the inverse element

a;; - a;i/D, where a;i is the cofactor at j,i and D is the determinant

expanded by either the 1'® row or the jth column. For each azg there

are six covariances to evaluate. If a* = (uv + wx), two of the six

34

are

u v . x )
(2.8-3) {uv+wx’uv+wx}’ {‘-‘V+wx’uv+wxi

and four are permutations of

uv + wx

(2.8.4){ ', ¥ }

where the numerators select one member from each of the product pairs;
uncorrelated factors have been suppressed.

The two covariances in (2.8.3) are exactly zero. Explicit ex-
pressions have been found for the remaining four given in (2.8.4) in
terms of the individual variances of u,v,w,x. It turns out that if
u,v,w,x are approximately of the same magnitude, then the covariances
are small compared to variances and approach zero as equality ic
achieved. Finally <a;;'> is given by the sum of these four covariances
and the four variances, of which <u/(uv + wx)) is typical. (Further

study may disclose that the covariances here make only small contribution

to <§:;).)
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Appendix

Some easily derived relations for statistically independent variables

are:

1. (;,_l—i> = <;+’SI> - Cx) /()"

1\ 1
2. <xy+z/ " T ¢ <xyy + K29)
1
3. <;y¥‘jz->' T (x* <y7 + <xz0)
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